49 research outputs found

    Optimal Approximation Algorithms for Multi-agent Combinatorial Problems with Discounted Price Functions

    Full text link
    Submodular functions are an important class of functions in combinatorial optimization which satisfy the natural properties of decreasing marginal costs. The study of these functions has led to strong structural properties with applications in many areas. Recently, there has been significant interest in extending the theory of algorithms for optimizing combinatorial problems (such as network design problem of spanning tree) over submodular functions. Unfortunately, the lower bounds under the general class of submodular functions are known to be very high for many of the classical problems. In this paper, we introduce and study an important subclass of submodular functions, which we call discounted price functions. These functions are succinctly representable and generalize linear cost functions. In this paper we study the following fundamental combinatorial optimization problems: Edge Cover, Spanning Tree, Perfect Matching and Shortest Path, and obtain tight upper and lower bounds for these problems. The main technical contribution of this paper is designing novel adaptive greedy algorithms for the above problems. These algorithms greedily build the solution whist rectifying mistakes made in the previous steps

    Budget Constrained Auctions with Heterogeneous Items

    Full text link
    In this paper, we present the first approximation algorithms for the problem of designing revenue optimal Bayesian incentive compatible auctions when there are multiple (heterogeneous) items and when bidders can have arbitrary demand and budget constraints. Our mechanisms are surprisingly simple: We show that a sequential all-pay mechanism is a 4 approximation to the revenue of the optimal ex-interim truthful mechanism with discrete correlated type space for each bidder. We also show that a sequential posted price mechanism is a O(1) approximation to the revenue of the optimal ex-post truthful mechanism when the type space of each bidder is a product distribution that satisfies the standard hazard rate condition. We further show a logarithmic approximation when the hazard rate condition is removed, and complete the picture by showing that achieving a sub-logarithmic approximation, even for regular distributions and one bidder, requires pricing bundles of items. Our results are based on formulating novel LP relaxations for these problems, and developing generic rounding schemes from first principles. We believe this approach will be useful in other Bayesian mechanism design contexts.Comment: Final version accepted to STOC '10. Incorporates significant reviewer comment

    Mechanism Design for Crowdsourcing: An Optimal 1-1/e Competitive Budget-Feasible Mechanism for Large Markets

    Full text link
    In this paper we consider a mechanism design problem in the context of large-scale crowdsourcing markets such as Amazon's Mechanical Turk, ClickWorker, CrowdFlower. In these markets, there is a requester who wants to hire workers to accomplish some tasks. Each worker is assumed to give some utility to the requester. Moreover each worker has a minimum cost that he wants to get paid for getting hired. This minimum cost is assumed to be private information of the workers. The question then is - if the requester has a limited budget, how to design a direct revelation mechanism that picks the right set of workers to hire in order to maximize the requester's utility. We note that although the previous work has studied this problem, a crucial difference in which we deviate from earlier work is the notion of large-scale markets that we introduce in our model. Without the large market assumption, it is known that no mechanism can achieve an approximation factor better than 0.414 and 0.5 for deterministic and randomized mechanisms respectively (while the best known deterministic and randomized mechanisms achieve an approximation ratio of 0.292 and 0.33 respectively). In this paper, we design a budget-feasible mechanism for large markets that achieves an approximation factor of 1-1/e (i.e. almost 0.63). Our mechanism can be seen as a generalization of an alternate way to look at the proportional share mechanism which is used in all the previous works so far on this problem. Interestingly, we also show that our mechanism is optimal by showing that no truthful mechanism can achieve a factor better than 1-1/e; thus, fully resolving this setting. Finally we consider the more general case of submodular utility functions and give new and improved mechanisms for the case when the markets are large.Comment: Accepted to FOCS 201

    Reservation Exchange Markets for Internet Advertising

    Get PDF
    Internet display advertising industry follows two main business models. One model is based on direct deals between publishers and advertisers where they sign legal contracts containing terms of fulfillment for a future inventory. The second model is a spot market based on auctioning page views in real-time on advertising exchange (AdX) platforms such as DoubleClick\u27s Ad Exchange, RightMedia, or AppNexus. These exchanges play the role of intermediaries who sell items (e.g. page-views) on behalf of a seller (e.g. a publisher) to buyers (e.g., advertisers) on the opposite side of the market. The computational and economics issues arising in this second model have been extensively investigated in recent times. In this work, we consider a third emerging model called reservation exchange market. A reservation exchange is a two-sided market between buyer orders for blocks of advertisers\u27 impressions and seller orders for blocks of publishers\u27 page views. The goal is to match seller orders to buyer orders while providing the right incentives to both sides. In this work we first describe the important features of mechanisms for efficient reservation exchange markets. We then address the algorithmic problems of designing revenue sharing schemes to provide a fair division between sellers of the revenue collected from buyers. A major conceptual contribution of this work is in showing that even though both clinching ascending auctions and VCG mechanisms achieve the same outcome from a buyer perspective, however, from the perspective of revenue sharing among sellers, clinching ascending auctions are much more informative than VCG auctions

    Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives: Offline and Online

    Get PDF
    The framework of budget-feasible mechanism design studies procurement auctions where the auctioneer (buyer) aims to maximize his valuation function subject to a hard budget constraint. We study the problem of designing truthful mechanisms that have good approximation guarantees and never pay the participating agents (sellers) more than the budget. We focus on the case of general (non-monotone) submodular valuation functions and derive the first truthful, budget-feasible and O(1)O(1)-approximate mechanisms that run in polynomial time in the value query model, for both offline and online auctions. Prior to our work, the only O(1)O(1)-approximation mechanism known for non-monotone submodular objectives required an exponential number of value queries. At the heart of our approach lies a novel greedy algorithm for non-monotone submodular maximization under a knapsack constraint. Our algorithm builds two candidate solutions simultaneously (to achieve a good approximation), yet ensures that agents cannot jump from one solution to the other (to implicitly enforce truthfulness). Ours is the first mechanism for the problem where---crucially---the agents are not ordered with respect to their marginal value per cost. This allows us to appropriately adapt these ideas to the online setting as well. To further illustrate the applicability of our approach, we also consider the case where additional feasibility constraints are present. We obtain O(p)O(p)-approximation mechanisms for both monotone and non-monotone submodular objectives, when the feasible solutions are independent sets of a pp-system. With the exception of additive valuation functions, no mechanisms were known for this setting prior to our work. Finally, we provide lower bounds suggesting that, when one cares about non-trivial approximation guarantees in polynomial time, our results are asymptotically best possible.Comment: Accepted to EC 201
    corecore